1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
\documentclass{presentation}
\title{Development of \\ Frequency Domain Multidimensional Spectroscopy}
\subtitle{---Beyond Two Dimensions---}
\author{Blaise Thompson}
\institute{University of Wisconsin--Madison}
\date{2018-04-23}
\begin{document}
\maketitle
\begin{frame}{Brown et al. (1999)}
\begin{columns}
\begin{column}{0.5\textwidth}
\fbox{\adjincludegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a"}}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a_1"}
\centering
\\
\vspace{2\baselineskip}
$\vec{k_{\text{sig}}} = \vec{k_a} - \vec{k_b} + \vec{k_c}$
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Overview}
\adjincludegraphics[width=\textwidth]{"mixed_domain/simulation overview"}
\end{frame}
\begin{frame}{Diversity}
Great diversity of experimental strategies.
\vspace{\baselineskip} \\
Different phase matching conditions...
\begin{itemize}
\item transient grating $\vec{k_a} - \vec{k_b} + \vec{k_c}$
\item transient absorption
\item DOVE
% TODO: darien's experiments
\end{itemize}
But also different color combinations and dimensions explored.
% SAY: based on the same basic ability to scan pulses in frequency, delay etc
\end{frame}
\begin{frame}{MR-CMDS development}
[SUMMARY SLIDE FOR REMAINDER OF PRESENTATION]
\end{frame}
\section{Tunability} % ===========================================================================
\begin{frame}{Tunability}
\centering \huge
Control and Calibration of \\
Optical Parametric Amplifiers
\end{frame}
\begin{frame}{Two strategies for CMDS}
Two strategies for collecting multidimensional spectra:
\vspace{\baselineskip} \\
\begin{columns}
\begin{column}{0.4\textwidth}
Time Domain
\begin{itemize}
\item broadband pulses
\item resolve spectra interferometrically
\item fast (even single shot)
\item robust
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
Frequency Domain
\begin{itemize}
\item narrowband pulses
\item resolve spectra by tuning OPAs directly
\item slow (lots of motor motion)
\item fragile
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Postage stamp}
[FIGURE FROM LIT]
\end{frame}
\begin{frame}{Czech}
[FIGURE FROM CZECH]
\end{frame}
\begin{frame}{Bandwidth}
\adjincludegraphics[width=\textwidth]{opa/OPA_ranges}
\end{frame}
\begin{frame}{TOPAS-C}
\includegraphics[width=\textwidth]{opa/TOPAS-C}
Two ``stages'', each with two motorized optics.
\end{frame}
\begin{frame}{Tuning}
% TODO: curve plot?
Tuning curves---recorded correspondence between motor positions and output color.
\vspace{\baselineskip} \\
Exquisite sensitivity to alignment and lab conditions---tuning required roughly once a week.
\vspace{\baselineskip} \\
Manual tuning is difficult...
\begin{itemize}
\item high dimensional motor space
\item difficult to asses overall quality
\item several hours of work per OPA (sometimes, an entire day for one OPA)
\end{itemize}
\end{frame}
\begin{frame}{Preamp}
\includegraphics[width=\textwidth]{opa/preamp}
\end{frame}
\begin{frame}{Automation}
\begin{columns}
\begin{column}{0.5\textwidth}
\adjincludegraphics[width=\textwidth]{opa/autotune_preamp}
\end{column}
\begin{column}{0.5\textwidth}
Fully automated OPA tuning
\begin{itemize}
\item less than 1 hour per OPA
\item can be scheduled for odd times
\item high quality from global analysis
\item reproducible
\item unambiguous representations
\end{itemize}
\vspace{\baselineskip} \\
Other calibration steps also automated.
\end{column}
\end{columns}
\end{frame}
\section{Acquisition} % ==========================================================================
\begin{frame}{Acquisition}
\centering \huge
Control of the MR-CMDS \\
Instrument
\end{frame}
\begin{frame}{The instrument}
Many kinds of component hardware
\begin{itemize}
\item monochromators
\item delay stages
\item filters
\item OPAs
\end{itemize}
$\sim10$ settable devices, $\sim25$ motors. \\
Multiple detectors.
\end{frame}
\begin{frame}{Pipeline}
\adjincludegraphics[width=0.5\textwidth]{presentation/pipe}
What does the ``pipeline'' of MR-CMDS data acquisition and processing look like in the Wright
Group?
\vspace{\baselineskip} \\
How to increase data throughput and quality, while decreasing frustration of experimentalists? %
\end{frame}
\begin{frame}{Acquisition}
PyCMDS---unified software for controlling hardware and collecting data.
\adjincludegraphics[width=\textwidth]{acquisition/screenshots/000}
\end{frame}
\begin{frame}{Abstraction}
Hardware---something that has a \hl{position} that can be \hl{set}.
\vspace{\baselineskip} \\
Sensor---something that has a \hl{signal} that can be \hl{read}.
\end{frame}
\begin{frame}{Central loop}
Set, wait, read, wait, repeat.
\vspace{\baselineskip} \\
Everything is multi-threaded (simultaneous motion, simultaneous read).
\end{frame}
\begin{frame}{Acquisitions}
Acquisition---a particular set of actions.
\vspace{\baselineskip} \\
Acquisition modules---a GUI that accepts a user instruction.
\end{frame}
\begin{frame}{Queue}
Queue.
\adjincludegraphics[width=\textwidth]{acquisition/screenshots/004}
\end{frame}
\begin{frame}{Queue}
This strategy can be incredibly productive!
\begin{itemize}
\item Soon after the queue was first implemented, we collected more pixels in two weeks than
had been collected over the previous three years.
\end{itemize}
\end{frame}
\subsection{Extensibility} % ---------------------------------------------------------------------
% DARIEN ADDED AEROTECH STAGE---1 DAY
% SUNDEN ADDED CUSTOM POYNTING TUNE IN A FEW DAYS (including testing)
\section{Processing} % ===========================================================================
\begin{frame}{Processing}
WrightTools.
\end{frame}
\begin{frame}{TOC}
\end{frame}
\begin{frame}{Flexible data model}
Flexibility to transform into any desired ``projection'' on component variables.
\adjincludegraphics[width=\textwidth]{processing/fringes_transform}
% mention: including expressions
\end{frame}
\section{Conclusion} % ===========================================================================
\begin{frame}{Conclusion}
\end{frame}
\section{Supplement} % ===========================================================================
\begin{frame}{Modular hardware model}
\adjincludegraphics[scale=0.25]{acquisition/hardware_inheritance}
\end{frame}
\begin{frame}{Modular sensor model}
Can have as many sensors as needed.
\vspace{\baselineskip} \\
Each sensor contributes one or more channels.
\vspace{\baselineskip} \\
Sensors with size contribute new variables (dimensions).
\end{frame}
\begin{frame}{Universal format}
WrightTools defines a \emph{universal file format} for CMDS.
\begin{itemize}
\item store multiple multidimensional arrays
\item metadata
\end{itemize}
Import data from a variety of sources.
\begin{itemize}
\item previous Wright Group acquisition software
\item commercial instruments (JASCO, Shimadzu, Ocean Optics)
\end{itemize}
\end{frame}
\begin{frame}{Domains of CMDS}
CMDS can be collected in two domains:
\begin{itemize}
\item time domain
\item frequency domain
\end{itemize}
\end{frame}
\begin{frame}{Time domain}
Multiple broadband pulses are scanned in \emph{time} to collect a multidimensional interferogram
(analogous to FTIR, NMR).
\vspace{\baselineskip} \\
A local oscillator must be used to measure the \emph{phase} of the output.
\vspace{\baselineskip} \\
This technique is...
\begin{itemize}
\item fast (even single shot)
\item robust
\end{itemize}
pulse shapers have made time-domain CMDS (2DIR) almost routine.
\end{frame}
\begin{frame}{Frequency domain}
In the Wright Group, we focus on \emph{frequency} domain ``Multi-Resonant'' (MR)-CMDS.
\vspace{\baselineskip} \\
Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses.
Multidimensional spectra are collected ``directly'' by scanning OPAs against each-other.
\vspace{\baselineskip} \\
This strategy is...
\begin{itemize}
\item slow (must directly visit each pixel)
\item fragile (many crucial moving pieces)
\end{itemize}
but! It is incredibly flexible.
\end{frame}
\begin{frame}{Selection rules}
MR-CMDS can easily collect data without an external local oscillator.
\vspace{\baselineskip} \\
This means... [BOYLE]
\end{frame}
\begin{frame}{MR-CMDS theory}
\end{frame}
\begin{frame}{Mixed domain}
[FIGURES FROM DAN'S PAPER]
\end{frame}
\end{document}
|