aboutsummaryrefslogtreecommitdiff
path: root/presentation.tex
blob: 97bd9de4a32f9d2fcb9436870b1bf843ac6dcbc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
\documentclass{presentation}

\title{Development of \\ Frequency Domain Multidimensional Spectroscopy}
\author{Blaise Thompson}

\institute{University of Wisconsin--Madison}
\date{2018-04-23}
%\subject{}

\begin{document}
\maketitle

\section{CMDS}  % =================================================================================

\begin{frame}{CMDS}
	The Wright Group focuses on the development and usage of \\
  Coherent MultiDimensional Spectroscopy (CMDS).
  \vspace{\baselineskip} \\
  CMDS is a family of related nonlinear spectroscopic experiments.
\end{frame}
   
\begin{frame}{Why CMDS?}
  [A BUNCH OF COOL PUBLICATIONS---FOCUSING ON COHERENCE TRANSFER, MECHANISMS ETC]
  [MORE APPLICATIONS]
\end{frame}

\begin{frame}{Coherence transfer}
  \fbox{\adjincludegraphics[width=\textwidth]{literature/ChenuAurelia2014a}}
\end{frame}

\begin{frame}{Analytical}
  But wait! I'm an \emph{Analytical} Chemist...
  \vspace{\baselineskip} \\
  What am I doing in a field so rich with fundamental studies?
  \vspace{\baselineskip} \\
  I hope to convince you that CMDS can be used for analytical work.  % TODO: better
\end{frame}

% TODO: in fact, 2DIR is already used regularly...

\begin{frame}{Analytical}  
  \fbox{\adjincludegraphics[width=\textwidth]{literature/PakoulevAndreiV2009a}}
\end{frame}

% TODO: pakoulev quotes

\begin{frame}{Proteomics}
  \fbox{\adjincludegraphics[width=\textwidth]{literature/FournierFrederic2009a}}
\end{frame}

% TODO: fournier quotes

\begin{frame}{Proteomics}
  \fbox{\adjincludegraphics[width=\textwidth]{literature/DonaldsonPaulMurray2010a}}
\end{frame}

% TODO: donaldson quotes
  
\section{Frequency domain}  % =====================================================================

\begin{frame}{Domains of CMDS}
  CMDS can be collected in two domains:
  \begin{itemize}
    \item time domain
    \item frequency domain
  \end{itemize}
\end{frame}

\begin{frame}{Time domain}
  Multiple broadband pulses are scanned in \emph{time} to collect a multidimensional interferogram.
  \vspace{\baselineskip} \\
  A local oscillator must be used to measure the \emph{phase} of the output.
  \vspace{\baselineskip} \\
  This technique is...
  \begin{itemize}
    \item fast (even single shot)
    \item robust
  \end{itemize}
  pulse shapers have made time-domain CMDS (2DIR) almost routine.
\end{frame}

\begin{frame}{Frequency domain}
  In the Wright Group, we focus on \emph{frequency} domain ``Multi-Resonant'' (MR)-CMDS.
  \vspace{\baselineskip} \\
  Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses.
  Multidimensional spectra are collected ``directly'' by scanning OPAs against each-other.
  \vspace{\baselineskip} \\
  This strategy is...
  \begin{itemize}
    \item slow (must directly visit each pixel)
    \item fragile (many crucial moving pieces)
  \end{itemize}
  but! It is incredibly flexible.  
\end{frame}

\begin{frame}{Bandwidth}
  MR-CMDS has no bandwidth limit!
  \vspace{\baselineskip} \\
  There is just the small matter of making the source continuously tunable...
  \adjincludegraphics[width=\textwidth]{opa/OPA_ranges}
\end{frame}

\begin{frame}{Selection rules}
  MR-CMDS can easily collect data without an external local oscillator.
  \vspace{\baselineskip} \\
  This means... [BOYLE]
\end{frame}

\section{The instrument}  % =======================================================================

\begin{frame}{The instrument}
  [PICTURE OF LASER LAB]
\end{frame}

\begin{frame}{The instrument}
  Many kinds of component hardware
  \begin{itemize}
    \item monochromators
    \item delay stages
    \item filters
    \item OPAs
  \end{itemize}
  $\sim10$ settable devices, $\sim25$ motors. \\
  Multiple detectors.
\end{frame}

\begin{frame}{Pipeline}
  \adjincludegraphics[width=0.5\textwidth]{presentation/pipe}
  What does the ``pipeline'' of MR-CMDS data acquisition and processing look like in the Wright
  Group?
  \vspace{\baselineskip} \\
  How to increase data throughput and quality, while decreasing frustration of experimentalists?  %
\end{frame}

\section{Processing}  % ===========================================================================

\begin{frame}{Processing}
  WrightTools.
\end{frame}

\begin{frame}{Universal format}
\end{frame}

\begin{frame}{Flexible data model}
\end{frame}

\section{Acquisition}  % ==========================================================================

\begin{frame}{Acquisition}
  PyCMDS.
\end{frame}

\begin{frame}{Modular hardware model}
\end{frame}

\begin{frame}{Acquisitions}
\end{frame}

\begin{frame}{Queue}
  This strategy can be incredibly productive!
  \begin{itemize}
    \item Soon after the queue was first implemented, we collected more pixels in two weeks than
      had been collected over the previous three years.
  \end{itemize}
\end{frame}

\section{Tuning}  % ===============================================================================

\begin{frame}{Tuning}
\end{frame}

\section{Supplement}  % ===========================================================================

\begin{frame}{MR-CMDS theory}
\end{frame}

\begin{frame}{Mixed domain}
  [FIGURES FROM DAN'S PAPER]
\end{frame}

\end{document}